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Nonlinear surface waves on a plasma sphere in an external electric field
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It is shown that nonlinear surface waves at the boundary between a spherical low-temperature
plasma and a dielectric container can couple to constant or time-varying electric fields in the latter.
Exact equations governing the interaction are obtained.
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There has been much recent interest in linear and non-
linear surface waves at the boundary of low-temperature
plasmas (e.g., Refs. [1-10]). These modes are of im-
portance in many applications of plasmas in modern
technology, such as in plasma production and diagnos-
tics, new sources of light, coherent radiation and parti-
cle beams, solid-state and optical devices, as well as in
plasma-assisted material processing [2,4-8]. The surface
waves can act as transmitters of energy and information
along the interface as well as between the plasma and
the confining medium. It is therefore of importance to
understand the properties of the surface waves and their
interaction with the volume waves within the plasma.

The existence of a class of exact solutions for finite-
amplitude surface waves progagating on the boundary
between a cold plasma and its dielectric container has
been pointed out recently [9,10]. The solutions are exact
in the sense that starting from the conservation equations
for the cold plasma and Maxwell’s equations, no approx-
imations of any kind, such as series expansions or ad hoc
truncations, need to be made in obtaining the eigenfunc-
tions describing the space-time behavior of the wave mo-
tion. These solutions are of special interest since, besides
describing the surface wave physics in a mathematically
exact manner, they can also be used for verifying vari-
ous approximation or numerical schemes in the study of
nonlinear wave interactions and instabilities.

In this Brief Report, we generalize the investigation of
Ref. [10] to include the effect of an external electric field
on the nonlinear surface waves on a spherical plasma.
The spherical geometry is relevant to many industrial
plasmas used for processing small-scale electronic mate-
rials. It can also serve as a model for nonlinear dust par-
ticles in the study of scattering and absorption of light
from them [11]. By first finding the appropriate spatial
behavior (of the field quantities) which allows for the sep-
aration of the time and space variables in the governing
equations as well as the boundary conditions, we obtain
a set of coupled nonlinear ordinary differential equations
for the temporal behavior of the system. It is found that
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steady and unsteady external fields in the surrounding
dielectric can modulate and resonantly amplify certain
surface modes, while leaving the other modes unaffected.
The latter do not grow, although they are nonlinearly
coupled to the amplified surface mode.

We consider a spherical electron plasma in the re-
gion 0 < r < R with a positively charged immobile
background of lattice or heavy ioms. Collisions and
other forms of dissipation are neglected. The plasma
is bounded at » = R by an infinitely large rigid linear
dielectric of constant permittivity e4. A spatially con-
stant external electric field Eq(t) is assumed to exist in
the dielectric at large distances from the plasma sphere.

The evolution of the electrostatic potential ¢, the elec-
tron density n., and fluid velocity v is governed by the
continuity and cold-fluid momentum equations for the
electrons, as well as the Poisson equation

q
VZ(P = _g(ne - nO)a (1)

where ng is the background ion density. The equations
are completed by the boundary conditions requiring the
continuity of the potential ¢ and the radial component
of the total current density

[qne'U'r - foatar‘P]r:R—O = [_606d8t8r<p]7-:}2+0 (2)

at the boundary » = R. Note that (2) is a generalization
of the often-used condition of the continuity of €peq0, ¢
across the interface (see Refs. [9] and [10] for details).

The approach we shall use is similar to that of Lorenz
[12] who investigated nonlinear atmospheric waves and
deterministic chaos by first separating the spatial varia-
tions in the governing equations from the temporal one.
However, here we shall make no ad hoc truncation of
the higher harmonics [9,10], nor any other approxima-
tion. Accordingly, for the spatial wave structure inside
the plasma, we make the Ansatze

ne = n(t), (3)
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where n, v;(i = a,b,c), vi(k = o,8,7), p; and @, are
functions of time only. The imposed electric field Eq(t)
(= —Versr) can be constant or any function of time.
The potential ¢, g in the dielectric satisfies the Laplace
equation exactly and ¢, g = @,<r at the boundary r =
R. Consistent with the cold-plasma approximation, the
thickness (which is of the order of the Debye length) of
the surface layer at the interface has been taken to be
smaller than any other characteristic dimension in the
problem. We also assume that no electrical nor chemical
effects that can affect the surface region are present. It
is of interest to point out that (3)—(6) are considerably
more general than the corresponding equations for the
case [10] without the external field.

As mentioned, the Ansitze (3)-(6) have been con-
structed such that the space and time dependences of
the field variables can be separated. In fact, substituting
(3)-(6) into (1) and (2) and the electron conservation
equations, and equating the coefficients of the various
(spatial) harmonics, one obtains

d-N+N(Vy+Vy+V,) =0, (7)

dohi — — - NV, =0 8

T¥ 3fd+2 T — Y ()

A Vi + V2 = —24; + —4_(N 1) (9)
T T ) 3€d+2 I

d &, = (3ead-Eo; — NVi), (10)

—26d+ 1

where N = n/ng, j = z,y or z, and 7 = w,t. We have
also defined V;r = v;x/Rwp, ¢; = eop;/noqR2, & =
€opr/nogR?, and &y; = €0Eoj/nogR. When the indices
i,j and/or k appear in the same equation, the ones that
are similar in the alphabetical ordering are to be taken.
In addition, the quantity ¢, appearing in (5) is given by
(1 — N)noqR?/6¢y.

Thus, we have effectively 13 unknowns, N, V;, Vi, ¢;,
and &, governed by 13 simple nonlinear ordinary differ-
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ential equations. In fact, the equations are in such a form
that one can first solve for the seven variables N, V;, and
¢; using the seven equations given by (7)—(9), and then
use the six equations given by (10) and (11) to study the
remaining six unknowns Vi and &. It is also easy to
obtain from (7) and (8) the constant of motion

1
3eq + 2

¢a + b+ P + (N —1) = ¢o, (12)

where the constant ¢p must be zero for a neutral plasma.

For given initial values and the external field &£y;(7),
the mathematically simple ordinary differential equations
(7)-(12) can be integrated [10] numerically to yield exact
nonlinear-wave solutions. The constant of motion given
by (12) is useful for verifying the numerical results. De-
pending on the initial conditions and the behavior of the
external electric field, waves with many different symme-
tries and temporal behaviors can be obtained. Similar
exact solutions have been obtained numerically for cylin-
drical surface plasma waves [13].

It is of interest to look at the linear and weakly nonlin-
ear limits. Here, one finds that the variable sets (N, V;,
¢:) and (Vi, &) are the eigenfunctions of independent
linear modes. The former set represents volume modes
corresponding to the ordinary electron plasma waves.
The other set, which involves no density perturbation,
describes surface electron plasma modes in spherical ge-
ometry. We note that the external field &; is coupled
only to the surface modes. It is also easily seen from
(10) and (11) that if &£y; oscillates at the fundamental
surface wave frequency (1 + 2ed)_%wp (or in general, at
the frequency [£/(£+ (1 +Z)ed)]%wp, where £ =1,2,3...,
depending on the geometry of the linear mode), reso-
nant excitation of the surface modes can occur. However,
the equations also indicate that the nonlinear terms do
not couple the different modes resonantly, so that the fa-
miliar nonlinear phenomenon of three-wave or four-wave
coupling does not occur in the present class of solutions.

In order to recover the results of Ref. [10], where no
external field was included and a particular symmetry
was chosen, we need to set £y; = 0 and identify %((ﬁa —dc)
with &, V,, and V, with W, and V. with V, where &, W,
and V are defined in Ref. [10].

To conclude, we have derived exact nonlinear ordi-
nary differential equations governing the propagation and
evolution of electron plasma waves in a plasma sphere
bounded by a dielectric containing an external elec-
tric field of arbitrary time dependence. Because of the
method of separation of variables used, the correspond-
ing solutions are of a special class. Our equations show
that only the surface modes can be driven by the ex-
ternal field. Although the other modes are nonlinearly
coupled to, and can in principle feed energy into the sur-
face modes, they cannot be driven by the latter or by
the external field. It should, however, be emphasized
that these conclusions may apply only to the class of so-
lutions presented here and that more general solutions
(e.g., nonseparable ones) may behave differently.

Our results may be of interest to surface-wave gener-
ated plasmas, control of plasmas for material processing
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[2,4,5], and for verifying approximation and numerical
methods. Since the evolution equations have been ob-
tained without making use of perturbations and trun-
cations of any kind, when appropriate dissipation is in-
cluded, the system can provide another mathematically
exact model for investigating linear and nonlinear wave
instabilities, saturation, nonlinear states, as well as de-
terministic chaos [12]. On the other hand, if we consider
the plasma as a spherical nonlinear dielectric and the sur-
rounding medium as vacuum or air, we arrive at a more
exact model of a nonlinear dust or microparticle, which

may be useful for investigating light scattering off non-
linear dust particles and the resulting optical bistability
problem [11].
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